-
Student Learning in Modeling Classrooms: Investigating the Lasting Impact of Understanding
- Back
Metadata
Title
Student Learning in Modeling Classrooms: Investigating the Lasting Impact of Understanding
Abstract
"In this dissertation, I detail a perspective on what it means to understand in science. This perspective has developed out ofa view ofscience as a modeling activity and years of empirical research into student reasoning and problem solving by members ofthe research group MUSE (Modeling for Understanding in Science Education). This group has developed and implemented innovative high school science curricula in three areas: Earth- Moon-Sun astronomy, genetics, and evolutionary biology. Previous research in these contexts has documented the extent to which students came to understand the in these classrooms. Here, I attempted to answer questions about the lasting impact ofsuch
understanding. To do this I interviewed high school students at six months and one to two years post instruction in two science disciplines—genetics or Earth-Moon-Sun astronomy. O f particular interest was how students used remembered ideas to solve problems. Findings indicated that not only did the students remember a large percentage ofwhat they had demonstrated understanding ofinitially, but that they could use remembered ideas in two interesting ways. First, students used a core set ofideas to reconstruct details they had
forgotten. For example, when asked the direction or duration ofthe Moon's motions, students used their knowledge oflunar phenomena and elements ofthe model ofcelestial motion they had learned to reconstruct the motions ofthe Moon. Second, remembered ideas served a generative function when students were presented with novel problems. That is, when asked to explain unfamiliar phenomena or to alter aspects oftheir models, the students were able to use what they remembered as a foundation from which to address the problems. Taken together these findings suggest that conceptual understanding, as developed in these contexts, persisted over time and could be used flexibly by students in problem solving situations."
Date
01/01/2002
Type of Publication
Author(s)
Passmore, Cynthia M.
Content
Construct
Methodology
Target Group
Students > Middle School Students | Students > Secondary School Students
Institution(s)
University of Wisconsin Madison
Peer-Reviewed Status
Thesis type
Resource Type
Nation(s) of Study
United States of America
Language
English