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Abstract

Although concept inventories are among the most frequently used tools in the physics and astronomy
education communities, they are rarely evaluated using item response theory �IRT�. When IRT models fit the
data, they offer sample-independent estimates of item and person parameters. IRT may also provide a way
to measure students’ learning gains that circumvents some known issues with Hake’s normalized gain. In this
paper, we review the essentials of IRT while simultaneously applying it to the Star Properties Concept
Inventory. We also use IRT to explore an important psychometrics debate that has received too little attention
from physics and astronomy education researchers: What do we mean when we say we “measure” a mental
process? This question leads us to use IRT to address the provocative question that constitutes the title of this
paper: Do concept inventories actually measure anything?
1. INTRODUCTION

Researchers in the fields of astronomy education research �AER� and physics education research �PER�
frequently use concept inventories to measure students’ knowledge. A concept inventory is an approximately 20–
25 question multiple-choice test designed to probe students’ understandings of a single topic �Bailey 2009;
Sadler et al. 2010�, sometimes called a construct �Wilson 2005�. The items and answer choices on a concept
inventory are selected based on research into students’ common reasoning difficulties �Bailey 2009�. Current
concept inventories cover a variety of constructs, including forces �Hestenes, Wells, and Swackhamer 1992�,
electricity and magnetism �Maloney et al. 2001; Ding et al. 2006�, lunar phases �Lindell 2001�, the
greenhouse effect �Keller 2006�, light and spectroscopy �Bardar et al. 2007�, and star properties �Bailey 2007�.
See also Sadler et al.’s �2010� work on developing and validating a pool of 211 items for K-12 astronomy
and space science concept inventories.

But do these concept inventories give us the information we need? Do they provide us with the information
we think we are getting? Typically, item and test quality, as well as students’ knowledge, are evaluated using
sample-dependent statistics from an unfalsifiable model known as classical test theory �CTT�. Students’
learning gains are often determined by comparing their scores on a concept inventory they took before and
after instruction. Yet such comparisons are not without problems. In Sec. 2, we highlight some issues surrounding
traditional CTT analyses of and learning gains computed using concept inventories.

Item response theory �IRT� offers an alternate route around some of these issues. A few PER studies employ
IRT �Ding and Beichner 2009; Lee et al. 2008; Marshall, Hagedorn, and O’Connor 2009; Pek and Poh
2000; Planinic 2006; Planinic, Ivanjek, and Susac 2010; Wang and Bao 2010� or IRT-inspired methods �Morris
et al. 2006�. IRT also has been used to analyze concept inventories in chemistry �Herrmann-Abell, DeBoer,
and Roseman 2009�, statistics �Allen 2007�, and geology �Libarkin and Anderson 2005�. Yet, despite their

potential, IRT models are not commonly used by our community �but see Sadler 1998 for an exception�.



In this paper, we undertake an IRT analysis of an astronomy concept inventory, the Star Properties Concept
Inventory v3 �SPCI; Bailey 2007�. Our data consist of the matched pre- and post-instruction responses of 334
students who took introductory astronomy for nonscience majors �hereafter ASTRO 101� in Spring 2005 at
a large university in the southwestern United States. We have three goals for this paper:

1� introduce IRT to members of the AER community who may be unfamiliar with its details and uses;
2� apply IRT to the SPCI to learn more about the SPCI and to exemplify how future studies may use IRT;

and
3� explore what “measuring” a person’s trait, such as knowledge about star properties, truly entails.

This last point is the subject of a vigorous debate within the psychometrics community, one which raises some
important questions for researchers attempting to measure students’ astronomical knowledge. Yet this debate
has not received much attention within the AER and PER communities �although it is briefly touched upon by
Ding and Beichner 2009�. We highlight some of these questions and their implications for test development
and interpretation near the end of this paper.

This paper is organized as follows. Section 2 elaborates on some of the problems with traditional concept test
analyses and motivates the use of IRT. Section 3 is a general introduction to three common IRT models;
readers already familiar with IRT may skip this section. Section 4 contains the results of our analysis of the
SPCI. Section 5 discusses IRT calculated gains. In Secs. 6 and 7, we evaluate how well IRT models fit the SPCI
data and whether or not the underlying assumptions of IRT hold, respectively. Section 8 is an argument for
why one might choose one IRT model over another. Section 9 is a summary of the paper and our conclusions.

2. ISSUES WITH TRADITIONAL CONCEPT TEST ANALYSES

Why should one take the time to apply IRT to a concept inventory? Or, stated another way, what is lacking in
our current approaches to concept inventories? In this section, we highlight issues with 1� using CTT to
judge item and test quality and student achievement and 2� traditional calculations of learning gain.

2.1. Issues with CTT

CTT postulates that a student p’s observed score �Xp� differs from her true score �Tp� by a certain amount of
error �Ep�,

Xp = Tp + Ep �1�

�Lord and Novick 1968�. From this simple model, a number of elegant statistics are derived �Lord and Novick
1968�. Some of the most important statistics include the following.

1� Estimates of reliability: These estimate how much of the variation in observed scores are due to variation
in test takers’ true scores �Lord and Novick 1968; Thompson 2003�. One of the most popular reliability
estimates is Cronbach’s �. To maximize the test’s reliability, Cronbach’s � should be as close to one
as possible �Borsboom 2005�, although values greater than 0.70 are generally considered acceptable �George
and Mallery 2009�.

2� P-values: An item’s P-value is the fraction of examinees who correctly answer the item �Lord and
Novick 1968; Crocker and Algina 1986�. This is a common measure of an item’s difficulty in CTT. P-values
should lie around 0.5 to maximize reliability �Ding and Beichner 2009�, although some studies accept
items with P-values as low as 0.10 or 0.20 and as high as 0.80 or 0.90 �Bardar et al. 2007; Ding et al. 2006;
Maloney et al. 2001�.

3� Point-biserials: A point-biserial is the correlation between an examinee’s score on a single, dichotomously
scored item and her total score �Lord and Novick 1968; Crocker and Algina 1986�. Point-biserials are
frequently used to judge the discriminatory power of items �e.g., how well do individual items separate
students who are high on the construct from students who are low on the construct�. Convention
suggests point-biserials should be greater than or equal to 0.20 �Ding and Beichner 2009�, although
researchers often set their own criteria �e.g., the developers of the Light and Spectroscopy Concept Inventory
flagged items with point-biserials smaller than 0.30 and larger than 0.70; Bardar et al. 2007�.



Concept inventory developers use these statistics to ensure the quality of their tests �e.g., Maloney et al. 2001,
Ding et al. 2006, Bardar et al. 2007, and Sadler et al. 2010�.

While these statistics do provide useful information, they are also highly sample-dependent �Hambleton and
Jones 1993; Thompson 2003�. For example, we computed Cronbach’s � for the SPCI for two groups: We first
used only students’ pre-instruction responses, and then we used only students’ post-instruction responses.
For the pre-instruction group, �=0.45. For the post-instruction group, �=0.72. The variation in these values
for Cronbach’s � is likely due to the fact that it depends on the total score variance; it is thus sensitive to the
homogeneity of the test-taker population �Thompson 2003�. More heterogeneous groups commonly yield
higher values of Cronbach’s �, as our example demonstrates. The fact that Cronbach’s � is low for the
pre-instruction group is not necessarily an indictment of the SPCI. It merely reflects the fact that the
pre-instruction group is very homogeneous in their �lack of� knowledge about star properties, which underscores
our point about the sample-dependence of CTT statistics.

The same sample-dependence can be seen if we look at the P-values and point-biserials for each item on the
SPCI. Table 1 demonstrates that one gets very different values for the item’s P-values and point-biserials
depending on the group one examines. These results are not surprising. We do not expect these statistics to be
invariant. P-values, for instance, necessarily depend on what students know. Once students learn more
about the construct being tested, the items’ P-values must change. These data do, however, emphasize the
sample-dependent nature of CTT statistics. These data also present a warning to researchers: One cannot claim
that a concept inventory is reliable or that an item has adequate difficulty and discrimination by simply
quoting the CTT statistics calculated from an earlier study on a different group of examinees. If one wants to
use CTT to judge item and test quality, then one must recalculate the CTT statistics for each group one
tests.

Table 1. CTT statistics for the SPCI, calculated using students’ pre-instructional
responses only, then using post-instructional responses only. Items are presented in
order of ascending P-value within each group

Pre-instruction Post-instruction
Item P-value Point Biserial Item P-value Point Biserial

22 0.05 0.10 2 0.17 0.17
5 0.10 0.14 13 0.17 �0.02
18 0.10 0.12 3 0.18 0.02
12 0.14 0.21 22 0.22 0.42
3 0.17 0.13 5 0.32 0.27

19 0.20 0.26 18 0.32 0.27
2 0.21 �0.08 8 0.36 0.23

15 0.23 0.16 12 0.40 0.45
20 0.23 0.14 19 0.42 0.32
10 0.24 0.14 9 0.49 0.13
13 0.28 0.09 15 0.51 0.41
17 0.29 0.16 20 0.51 0.28
23 0.30 0.07 6 0.60 0.23
11 0.31 0.19 23 0.60 0.22
8 0.34 0.06 10 0.62 0.32
9 0.36 0.17 11 0.64 0.34
7 0.37 0.17 21 0.67 0.38

21 0.39 0.08 16 0.70 0.15
6 0.39 0.07 1 0.73 0.29
1 0.42 0.20 17 0.74 0.42

16 0.56 0.16 7 0.75 0.30
4 0.63 �0.04 4 0.81 0.29

14 0.81 0.24 14 0.93 0.24



Another problem with CTT-based analyses is their focus on students’ total scores. In CTT, one strives to
reduce the error in measuring a student’s true score so that her observed score is as close to her true score as
possible. But what does this true score actually represent? It is defined as the expectation value of all the
observed scores a student would have earned if she took the test multiple times under the same conditions �which
means we have to brainwash her so that she cannot remember her previous answers to the test; see also
Lord and Novick 1968 and Borsboom 2005�. Even if we ignore the inherent fictitiousness of this thought
experiment, we may still wonder what the true score actually measures. Borsboom �2005� points out that CTT
proposes no relationship between a student’s true score and the amount of the construct she possess �which
we will henceforth call her ability in keeping with the nomenclature of IRT�. A student’s score is due to some
unspecified �at least in CTT� combination of her ability and the properties of the items, such as how difficult
they are. What does a score tell us about her ability independent of the items? Perhaps very little. A student may
do well on a test because she has a high ability, because the test’s items are easy, or because she has a high
ability and the test’s items are easy. If we only use CTT, then we may not actually measure students’ abilities.

We note one final weakness with CTT: The model cannot be falsified �Lord 1980�. One either accepts Eq.
�1� or not. CTT offers no way to test whether or not it is a valid description of what happens when students take
a test.

Of course, CTT is not worthless. It has several advantages �Hambleton and Jones 1993�. Its statistics are
easily computed, and they may be calculated with only a modest number of examinees. It can help detect poor
items through relatively straightforward procedures. It is easy for a data set to meet the weak assumptions
of CTT. Researchers must weigh these positives against CTT’s negatives when they are deciding whether and
how to use CTT.

That being said, IRT models, when they fit the data, offer several advantages over CTT. First, its parameters
are sample-independent �Hambleton and Jones 1993; Whitely and Dawis 1974�. This means that one can estimate
item parameters independent of the population of examinees. Thus, judgments of item and test quality may
still be made, even if the pilot test population is not representative of the population of interest. Students’ abilities
also can be estimated independent of the specific items they take. IRT can disentangle students’ abilities
from item properties to provide test-independent measures of ability. IRT models are also falsifiable �Embretson
and Reise 2000�. One can test whether or not a given model accurately describes how students respond to
individual items. In Secs. 3, 4, 6, and 7 below, we highlight these advantages of IRT over CTT in the context
of our analysis of the SPCI.

2.2. Issues with Learning Gains

Concept inventories are frequently used to measure gain—that is, how much a student or a group of students
improves on a construct over time. One way to measure gain is to administer a concept inventory twice,
once before and once after instruction, and then subtract a student’s pre-instruction �pre-test� score X0 from
her post-instruction �post-test� score Xf. Yet differences between post- and pre-test scores may be problematic
measures of gain. Bereiter �1963� noted that such gains decrease in reliability as the correlation between
pre- and post-test scores increases, exhibit a spurious negative correlation with pre-test scores, and assume that
a given difference Xf −X0 �e.g., 15 points� implies the same difference in ability regardless of the student’s
initial score. Cronbach and Furby �1970� recommend avoiding gain calculations altogether, although Rogosa and
Willett �1983� describe when gain scores can be reliable. In general, AER and PER studies rarely use Xf

−X0 as a measure of gain.

In AER and PER, a more common expression is Hake’s �1998� formula for the normalized gain,

�g� =
Xf − X0

M − X0
, �2�

where M is the maximum number of points for the test. Gains calculated via Eq. �2� frequently are interpreted
as the ratio of the amount by which a student improves on a test to the maximum amount by which she

could have improved �Hake 1998; Prather et al. 2009�.



Note that Hake’s formula still relies on the difference between the post-test and pre-test scores. It also relies
on the difference between the maximum possible score and the pre-test score. If one wishes to find the average
gain for a group of students, one may either calculate and average �g� for every student or plug the group
averages of Xf and X0 into Eq. �2�. Bao �2006� showed that one may get different answers depending on which
procedure one uses. Most studies adopt the latter procedure �e.g., Hake 1998 and Prather et al. 2009�. But
before we worry about how to calculate normalized gains, we must address a more fundamental question: Are
these mathematical and statistical operations even sensible to perform?

To better understand this question, we must look at Stevens’s �1946� work on scale types. Stevens defines
measurement as “the assignment of numerals to objects or events according to rules.” The scale you are working
with is determined by how numbers are assigned. If numbers are assigned merely as labels, then one has a
nominal scale �e.g., group 1, group 2, etc.; Vogt 2007�. If the assignment maintains some empirical ordering
between the objects one is measuring, then one has an ordinal scale �e.g., class rank; Vogt 2007�. If the
numbers are assigned such that they preserve an empirical ordering and such that differences between numbers
represent meaningful empirical differences between the objects, then one has an interval scale �e.g., calendar
years; Vogt 2007�. If the assignment is done such that one has all the properties of an interval scale and
ratios between numbers are also meaningful, then one has a ratio scale �e.g., age; Vogt 2007�. Stevens noted
that many measurements in the physical sciences are on ratio scales, while the social and behavior science
frequently have ordinal measures.

Stevens also notes that only certain mathematical and statistical operations are permitted for each scale type.
For example, subtracting two numbers is only sensible if one has an interval or ratio scale. Imagine studying
two stars: one, Population I; the other, Population III. The numbers are on a nominal scale since they are simply
labeling two different groups of stars. Subtracting one number from the other yields a meaningless number.
Likewise, taking the mean could lead us to conclude that the average star in our sample is Population II—
except this statement is also meaningless �and wrong�. While we can manipulate numbers all we want,
some manipulations will not provide any sensible information, depending on the scale type.

This is relevant for gain calculations because Wright and Linacre �1989� argued that raw scores are typically
ordinal. By looking at raw scores, we can readily order students by the number of questions each correctly
answers. Such an ordering lets us rank students according to the amount of the construct each possesses. For
example, a student who scores a perfect 23 points on the SPCI likely knows more about the properties of
stars than a student who only answered 20 items correctly. However, we cannot say that a student needs the
same increase in her knowledge of star properties to move from a score of 15 to a score of 18 points as she would
to move from a score of 20 to 23 points. Equal differences in raw scores do not necessarily correspond to
equal intervals in students’ abilities �Bereiter 1963; Wright 1997�. Thus, raw scores do not necessarily form an
interval scale for students’ abilities.

Yet Hake’s formula requires that we subtract scores and, if we are finding a group’s average gain, calculate
means. These operations are only appropriate if differences between raw scores are meaningful—that is, we must
have an interval scale �Stevens 1946�. But raw scores are not manifestly interval measurements of ability
�Wright and Linacre 1989�. Planinic, Ivanjek, and Susac �2010� noted that “Hake’s normalized gain… may also
be influenced by the nonlinearity of raw scores expressed as percentages.” Hake’s normalized gain, being
constructed from ordinal data, may be at most an ordinal measure of learning gain.

This ordinal nature is further supported when we consider what happens when �g��0. While �g� has an upper
bound of one, there is no corresponding lower bound �Marx and Cummings 2007�. This means that the
difference between two gains does not have the same meaning across the scale, as must be the case for interval
and ratio scales. Marx and Cummings �2007� proposed redefining �g� when post-test scores are lower than
pre-test scores, but this further calls into question the nature of �g�’s scale.

Additionally, what are we to make of the fact that Hake’s formula multiplies the difference Xf −X0 by �M
−X0�−1? At first, this seems to account for Bereiter’s �1963� criticism that Xf −X0 corresponds to different changes
in ability for different X0. Yet the multiplying factor �M −X0�−1 increases as the pre-test score increases.
This means that given two students who exhibit the same Xf −X0, a higher normalized gain score will be assigned
to the student with the highest pre-test score �Brogt et al. 2007�. Hake did not justify why an improvement
of, say, ten points corresponds to a higher gain in ability for students with high, rather than low, pre-test scores.
As we show in Sec. 5, such an improvement in raw scores, in some cases, actually denotes a larger increase

in ability for students with low pre-test scores.



We must clarify an important point: We are not claiming that gain scores calculated via Hake’s formula are
useless. Indeed, they have played a pivotal role in drawing attention to the ineffectiveness of traditional lectures
�Hake 1998; Prather et al. 2009�. We merely urge caution in their use and interpretation. Hake’s gain may
provide adequate ordinal rankings of students or groups of students. But sometimes we want more than ordinal
comparisons. Sometimes we want to know “how much” better a student or a group of students is compared
to another. For example, Hake �1998� made the statement “it appears that the present interactive engagement
courses are, on average, more than twice as effective… as traditional courses” �p. 66� when he found that
the average normalized gain for interactive engagement courses in his analysis was more than twice as large
as for traditional courses. This statement implicitly assumes more than just an ordinal ranking. Conclusions about
how much more gain students or groups achieved compared to others require measures on interval or ratio
scales.

IRT offers the potential to place students’ abilities on an interval scale �Embretson and Reise 2000�. Using
IRT, we may be able to make meaningful comparisons of gain by looking at the differences in post- and
pre-instruction abilities �Embretson and Reise 2000�. Section 5 revisits gain from an IRT perspective.

3. IRT BASICS

Section 2 motivated examining concept inventories with IRT. This section is a pedagogical review of the
basics of IRT. We first expatiate the three simplest IRT models for dichotomously scored items: the Rasch, two
parameter logistic, and three parameter logistic models. These models contain one, two, and three parameters,
respectively, that are adjusted in order to provide the best fit between the model and students’ response
data. After presenting these three models, we discuss the assumptions of IRT and how, when those assumptions
hold, we can obtain sample-independent estimates of item parameters of students’ abilities. This section
concludes with an overview of how IRT parameters are estimated in practice.

3.1. The Rasch Model

The simplest IRT model is called the one parameter logistic �1PL� or Rasch model �Lord and Novick 1968;
Rasch 1960; Hambleton and Jones 1993; Harris 1989; Embretson and Reise 2000; Whitely and Dawis 1974� and
can be written as

P�Xpi = 1��p,bi� =
exp��p − bi�

1 + exp��p − bi�
. �3�

This equation represents the probability that a person p will correctly answer a dichotomously scored item i.
Xpi represents the person’s response to the item; it equals one when the person gives the right answer and
zero when the person gives the wrong answer. The probability depends on two factors: The person’s ability �p

and the difficulty of the question bi. This probability can be interpreted in one of two ways: Either it represents
the probability of selecting at random a person with an ability �p from a larger population �the random sampling
interpretation�, or it represents the percentage of the number of times a person of ability �p will give the
correct answer if she is brainwashed and retested without changing any other conditions �the stochastic subject
interpretation�. See Borsboom �2005� and Holland �1990� for discussions of the strengths and weaknesses
of each interpretation.

Whence comes Eq. �3�? Following Linacre �2005� and Masters �2001�, it may be motivated as follows. �For
more formal derivations, see Fischer 1995�. Imagine two students A and B with abilities �A and �B. Each student’s
ability is a number representing how much of the construct they possess. In the context of the SPCI, �p

represents how much a student p knows about the properties of stars. A student’s ability can range anywhere
from −� to �, and if �A��B then student A has more ability than student B. Since �A and �B are considered
innate �though not necessarily unchangeable; see Sec. 5� properties of students A and B, the difference �A−�B

should be constant regardless of the specific items we use to measure �A and �B. This last statement is a
manifestation of the principle of specific objectivity �Rasch 1960�, a discussion of which we postpone until Sec.
8 below. In IRT, a person’s ability determines the probability that she will correctly answer an item i. If
both student A and student B respond to the same item i, then we can imagine that A has a probability of correctly
answering the item PAi and B has a probability of correctly answering the item PBi. How do PAi and PBi

relate to �A and �B? The difference PAi− PBi cannot equal �A−�B since the latter can take any value from −�
to �, while the former is restricted to lie between 0 and 1. However, the odds Dpi a person p correctly

answers item i,



Dpi =
Ppi

1 − Ppi
, �4�

ranges from 0 to �. Taking the natural logarithm of the odds yields a quantity whose value can lie anywhere
between −� to � �Linacre 2005�. This suggests the following relationship:

�A − �B = ln�DAi� − ln�DBi� , �5�

which can be rewritten as

�A − �B = ln� PAi

1 − PAi
	 − ln� PBi

1 − PBi
	 . �6�

In other words, the difference in ability between A and B equals the difference in log odds units �logits� that
they correctly answer an item i. This relationship means that abilities in IRT are measured in logits.

Now imagine two items m and n on a test measuring a single construct. Item m’s difficulty is represented by
the difficulty parameter bm, and item n’s difficulty is represented by bn. Just like students’ abilities, the
items’ difficulties can take any value between −� to �, and if bm�bn, then item m is a harder item than item
n. An item’s difficulty is considered to be an intrinsic property of that item, much like a person’s ability is
an intrinsic property of that person. This means that the difference in difficulties bm−bn should not depend on
the specific students who answer items m and n �this statement is another manifestation of specific
objectivity�. Mimicking the reasoning that led to Eq. �6�, we find the following relationship between bm−bn,
the probability Ppm that a person p correctly answers item m, and the probability Ppn that p correctly answers item
n:

bm − bn = ln� Ppm

1 − Ppm
	 − ln� Ppn

1 − Ppn
	 . �7�

Equation �7� states that the difference in difficulty between items m and n, as measured in logits, equals the
difference in the log odds that a person p correctly answers either item.

Equations �6� and �7� indicate that abilities and item difficulties are measured on the same scale. This means a
person A’s ability can be directly compared to an item m’s difficulty to determine the probability that A
correctly answers m. Equation �6� specifies �A to some constant K1:

�A = ln� PAm

1 − PAm
	 + K1. �8�

Equation �7� likewise specifies bm to a constant K2,

bm = ln� PAm

1 − PAm
	 + K2. �9�

In order for both Eqs. �8� and �9� to be true, K1=bm and K2=�A. Therefore,

�A − bm = ln� PAm

1 − PAm
	 . �10�

Equation �10� shows that when bm=�A, a person of ability �A has even odds �DAm=1 or PAm=50%� of
correctly answering item m. Equation �10� is equivalent to Eq. �3� for the case where p=A and i=m.

Item characteristic curves �ICCs� are a graphical way to view the relationships between abilities, item difficulties,
and the probability of giving a correct response. An item’s ICC is a plot of the probability of correctly

answering that item as a function of respondent ability �Hambleton and Jones 1993; Harris 1989�. Figure 1



displays the ICCs for items 16 and 17 on the SPCI. For both items, the probability of a correct response is a
monotonically increasing function of ability. Note that item 17 must be a harder item than item 16: For
any given ability, the probability of correctly answering item 17 is always lower than the probability of correctly
answering item 16. The value of an item’s difficulty parameter bi can be found by identifying the ability
value at which the curve’s inflection point occurs; in the Rasch model, the inflection point always happens when
the probability of a correct response equals 50%. An item’s ICC demonstrates that, in the Rasch model, the
probability of a person’s response is controlled by two factors: the person’s ability and the item’s difficulty.

3.2. The Two Parameter Logistic Model

The Rasch model assumes that the student’s performance on an item is based solely on her ability and the
item’s difficulty. However additional item parameters may be added to Eq. �3�. In the two parameter logistic
�2PL� model, a value representing the discrimination of the item ai is included �Lord and Novick 1968;
Hambleton and Jones 1993; Harris 1989�:

P�Xpi = 1��p,ai,bi� =
exp�ai��p − bi��

1 + exp�ai��p − bi��
. �11�

This discrimination parameter can have any value between 0 and �. Note that, like item difficulty, item
discrimination in IRT is not the same as item discrimination in CTT. To understand why ai reflects an item’s
discrimination, look at Figure 2. It shows the 2PL ICCs for items 16 and 17 on the SPCI. Item 17 has a
larger value for ai than item 16, so item 17’s ICC has a steeper slope than the ICC of item 16. Steeper ICC
slopes correspond to greater values of the discrimination parameter �Hambleton and Jones 1993; Harris 1989�.
One can imagine that in the limit ai→�, the slope becomes infinite. This corresponds to an item for which
people below a certain ability have no chance of answering correctly; people above that ability have a 100%
probability of giving the correct answer. In the limit ai→0, an item’s ICC becomes a horizontal line. This
would mean that all respondents, regardless of ability, would have the same probability of answering the item.
Thus, how a person answers the item would tell nothing about her ability. This is why items with higher
values of ai are considered to better discriminate between two people of different abilities.

Figure 1. The Rasch model ICCs for items 16 �solid green curve� and 17 �dotted blue curve�



Note that Eq. �3� for the Rasch model implies that all items have a discrimination of unity. In practice, this
requirement is sometimes relaxed: While all items must have equal discriminations in the Rasch model, the
specific value of the discrimination parameter can have values other than one. This is the approach we
took in our analysis of the SPCI �see Sec. 4 below�.

3.3. The Three Parameter Logistic Model

The three parameter logistic �3PL� model adds a third item parameter �Lord and Novick 1968; Hambleton
and Jones 1993; Harris 1989; Lord 1980�. This parameter, ci, is often referred to as the guessing parameter. It
takes into account items for which even people of extremely low abilities have a nonzero probability of
giving the correct answer �Hambleton and Jones 1993; Harris 1989�. The 3PL model is written as

P�Xpi = 1��p,ai,bi,ci� = ci + �1 − ci�
exp�ai��p − bi��

1 + exp�ai��p − bi��
. �12�

Figure 3 shows the 3PL ICC for items 16 and 17. The guessing parameter’s effect is most obvious if one
compares the ICCs for item 17 for the 2PL �Figure 2� and 3PL �Figure 3� models. The guessing parameter adds
a lower asymptote to the probability of correctly answering the item �Hambleton and Jones 1993; Harris
1989; Lord 1980�.

3.4. Assumptions of IRT

IRT makes two key assumptions. First, the test is assumed to be unidimensional. That is, it only measures
abilities on a single construct �Embretson and Reise 2000; Whitely and Dawis 1974; Lord 1980; Kyngdon 2008�.
This assumption is consistent with the goals of many concept inventories �Bailey 2009�. Second, IRT
assumes local independence. This means that all correlations between examinees’ responses should be entirely
explained by their abilities; no other factor should cause any correlations in item responses �Embretson and
Reise 2000; Whitely and Dawis 1974; Kyngdon 2008�. Unlike CTT, we can test whether or not the data support
these assumptions. Ideally, we would check these assumptions first before proceeding with a discussion of
our results. However, one of the goals of this paper is to provide a pedagogical explanation of the methods and
interpretations of IRT models. We have found such a pedagogical treatment is clearer to IRT novices if we
first discuss the results of our analysis and then describe how to check IRT’s assumptions. We thus postpone any

Figure 2. The 2PL model ICCs for items 16 �solid green curve� and 17 �dotted blue curve�
further discussion of these assumptions until Sec. 7.



3.5. Parameter Invariance

When IRT’s assumptions hold and the model fits the data, then estimates of students’ abilities do not depend
on the specific items administered, and estimates of item parameters do not depend on the abilities of
respondents. This property is known as parameter invariance �Hambleton and Jones 1993; Rupp and Zumbo
2006�.

To understand parameter invariance, imagine constructing a table like Table 2 for a set of students’ responses
to a five-item test. For simplicity, assume that the Rasch model fits the observed pattern of responses �e.g.,
only an item’s difficulty and a student’s ability determine the probability she gives the correct answer�. Each
column represents one of the six possible total test scores, and each row corresponds to a different item.
In the Rasch model, total test score is a sufficient statistic for ability �Andersen 1977�. That is, total test scores
contain all the information that the data provides about students’ abilities �Lord 1980; Embretson and Reise
2000; Wright 1997�. Similarly, the number of people who correctly answer an item is a sufficient statistic for item
difficulty �Embretson and Reise 2000�. Each cell represents the proportion of students with a given total
score �ability� who correctly answer a given item. If we adopt the random sampling interpretation of the Rasch
model probability, then the proportion correct represented in each cell is an estimate of the probability that
a person with that ability �total score� will correctly answer that item. We can transform these probabilities into
log odds. To estimate the ability associated with each total score, we can average the log odds for each
column. Item difficulties are likewise estimated by averaging the log odds across each row and multiplying by
-1 �so that easier items have smaller difficulty values�. These item difficulty estimates may be improved by
adjusting their values such that each represents its deviation from the mean item difficulty �Embretson and Reise
2000�. Ability estimates may be adjusted by the same factor as item difficulty estimates �Embretson and
Reise 2000�. This heuristic estimation technique originally was used by Rasch �1960� and has been subsequently
used for illustrative purposes by others �Embretson and Reise 2000; Whitely and Dawis 1974�.

How does this example motivate parameter invariance? Notice that we estimated item difficulties by averaging
the log odds across total test scores. Each cell, which represents the probability that a person with that total
score �ability� will give the right answer, contributes equally to this estimate. This means that item difficulty
estimates do not depend on the number of people we have in each total score �ability� group. A similar
argument applies to how we estimated abilities �Embretson and Reise 2000; Whitely and Dawis 1974�.

Here is another way to think about this example. Imagine we only looked at students with low abilities �e.g.,
total scores of 0, 1, or 2�, or we only looked at students with high abilities �e.g., total scores of 3, 4, or
5�. If the Rasch model fits, then the log odds in the cells should not change because the log odds only depend

Figure 3. The 3PL model ICCs for items 16 �solid green curve� and 17 �dotted blue curve�
on respondents’ abilities and item difficulties, which are conceptualized as intrinsic properties of the



respondents and items, respectively. When we estimate item difficulties by averaging the log odds for each
item across abilities, we probably will get different values depending on whether we use the low ability students
or the high ability students. However, our estimates based on these two groups should be related to one
another by some linear transformation. In general, IRT parameters are invariant only up to some linear

transformation �Rupp and Zumbo 2006�. This is due to the fact that IRT models do not specify a scale: The
researcher may anchor scores either to items �e.g., by setting the mean item difficulty to be zero; Embretson and
Reise 2000� or to respondents �e.g., by specifying that abilities should have a mean of zero and a standard
deviation of one; see Embretson and Reise 2000, Harris 1989, or Rupp and Zumbo 2006�. In the above example,
we adjusted the item difficulties such that they reflect their deviation from the mean item difficulty; this
means we anchored the scores to the items. This is why we should get different estimates for item difficulties
depending on whether we look at low or high ability students—but those estimates should be linearly
related to one another. A similar argument can be made for ability estimates made using different subsets of
items.

We can also think about parameter invariance if we imagine fitting ICCs to each item. To fit an ICC, imagine
you have a list of students’ responses to a single item. The students are ordered in that list according to
their abilities. If we divide this list into bins of students, where each bin contains approximately the same number
of students, then we can calculate the average ability within each bin and the proportion of students in each
bin who correctly answered the item. Each proportion is an estimate of the probability that a student whose ability
is equal to the bin’s average ability will give the correct answer. We can then plot a point for each bin on a
graph whose axes are identical to those of the ICCs shown in Figs. 1–3 above. If the model fits, then we should
be able to fit the same ICC to the item regardless of whether we base our fit off of low ability students,
high ability students, or both. If we look only at low ability students, then the data should trace out the lower
part of the ICC. If we look only at high ability students, then the data should trace out the upper part of
the ICC. The two ICCs may be offset from one another since the item’s difficulty was estimated using two
different populations. However, a linear transformation should make the two ICCs coincident and place them on
the same scale.

The above example was for the Rasch model. What about the 2PL and 3PL models? The total test score is
only a sufficient statistic for the Rasch model �Andersen 1977; Embretson and Reise 2000�. In the 2PL model,
the total test score depends both on a student’s ability and the specific items she correctly answers; items
with higher discriminations are weighted higher �Lord 1980�. There is no sufficient statistic for the 3PL model
due to the presence of the guessing parameter �Lord 1980�. Nevertheless, parameter invariance still holds
for both the 2PL and the 3PL models as long as they fit �Hambleton and Jones 1993�.

This last point is critical: Parameter invariance is only true if an IRT model fits the data �Hambleton and
Jones 1993; Whitely and Dawis 1974�. If the model does not fit, then there is no guarantee of parameter
invariance, which negates many of the statistical advantages of IRT relative to CTT. In Sec. 6, we discuss some

Table 2. A table of proportions, such as the one shown here, can motivate parameter
invariance. Each item receives its own row, and each total score receives its own
column. Each cell represents the proportion of respondents with that total score who
correctly answer that item. These proportions are used as estimates of the probabil-
ity that a respondent with a given score will correctly answer a given item

Item
Total Score

0 1 2 3 4 5

1 P01 P11 P21 P31 P41 P51

2 P02 P12 P22 P32 P42 P52

3 P03 P13 P23 P33 P43 P53

4 P04 P14 P24 P34 P44 P54

5 P05 P15 P25 P35 P45 P55
methods for judging model fit.



3.6. Estimating IRT Parameters

The example parameter estimation procedure described in Sec. 3.5 is crude and can only be used if one adopts
the Rasch model. In practice, IRT parameters are estimated via computer programs that maximize the
likelihood of the observed response patterns. There are several maximum likelihood procedures one can use,
and many IRT software packages allow one to choose between them. A joint maximum likelihood �JML�
procedure alternates between estimating item parameters by assuming abilities are known and estimating
abilities by assuming item parameters are known, with each iteration using the improved estimates from the
previous step. Conditional maximum likelihood �CML� estimation only works for the Rasch model because it
takes advantage of the fact that, in the Rasch model, total test score is a sufficient statistic for estimating
abilities �Andersen 1977; Embretson and Reise 2000�. Thus, abilities can be estimated by maximizing the
likelihoods of the observed total scores, and difficulties can be estimated by maximizing the likelihoods of the
number of people who correctly answer each item. In marginal maximum likelihood �MML� estimation,
one assumes the sample of respondents is drawn from a population with a certain distribution of abilities �usually
the standard normal distribution�. Using this population distribution, one can integrate over abilities to
obtain the marginal likelihood function, which is then maximized to estimate the item parameters. Once the
item parameters are estimated, respondents’ abilities can be estimated. Such abilities estimates may be done using
a simple maximum likelihood estimation �MLE�. However, if one has already assumed a population
distribution, one can maximize the posterior distribution, which is just the product of the likelihood function
and the hypothesized population distribution. If one uses the mode of the posterior distribution as the best estimate
of �p, then the ability estimates are said to be found using a maximum a posteriori �MAP� method. If
instead one uses the mean of the posterior distribution, then the method is called expected a posteriori �EAP�.
The details of these estimation procedures are described elsewhere �e.g., Baker and Kim 2004�.

Each estimation technique has its own benefits and handicaps. Embretson and Reise �2000� discuss the
advantages and disadvantages of these estimation procedures in detail; we highlight some of the salient points
here. MML, MAP, and EAP estimations are dependent on choosing an appropriate prior distribution. However,
unlike CML and MLE, they can provide ability estimates for examinees who correctly answer all or none of the
test’s items. CML is also only applicable to the Rasch model. However, CML does not require any assumptions
about prior distributions, and neither does JML. JML is straightforward to program, but its parameter
estimates are inconsistent: Adding more examinees to the sample population does not improve item parameter
estimates. JML, MAP, and EAP estimates may also be biased �the expected value of �p does not always
equal the true value of �p�. Given the different assumptions, benefits, and handicaps of these various methods,
researchers should always report which estimation procedure they employ when using IRT.

4. IRT ANALYSIS OF THE SPCI

With the background of Sec. 3 in mind, what do we get when we apply IRT to the SPCI? In this section, we
apply the Rasch, 2PL, and 3PL models to the SPCI. Model parameters were estimated using the BILOG-MG

software �Zimowski et al. 1996�. We used an MML estimation procedure to find the item parameters since JML
is inconsistent and since CML only applies to the Rasch model �Embretson and Reise 2000�. We used these
item parameters to construct the ICCs shown in Sec. 3 above. Abilities were estimated using an EAP estimation
approach since it utilizes the prior distribution used by MML and it produces smaller standard errors than
MLE �Embretson and Reise 2000�. BILOG-MG estimated the model parameters from the matched pre- and
post-instruction responses of 334 students.

We used BILOG-MG’s multigroup capabilities �Zimowski et al. 1996� to estimate the item parameters using
both students’ pre-test and post-test responses. BILOG-MG anchored the scale by setting the mean ability of the
pre-instruction population to 0 and the standard deviation to 1.

The estimated parameters for the Rasch, 2PL, and 3PL models are shown in Tables 3–5 below. As we alluded
to in Sec. 3.2, all the items have the same nonunity value for the discrimination parameter �ai=0.461�
when we apply the Rasch model. Additionally, ci=0 for all items in the Rasch and 2PL models since neither
model has a guessing parameter.

Note that we do not report any 3PL item parameters for items 3 and 13. BILOG-MG was unable to estimate

parameters for these items. Consequently, we excluded them from our 3PL analysis of the SPCI.



Why are items 3 and 13 problematic? Look again at the CTT statistics in Table 1. Items 3 and 13 are among
the hardest items post-instruction. Additionally, their point-biserials actually decrease from pre- to
post-instruction. The point-biserials of other items increase from the pre-test to the post-test. These CTT
statistics show that items 3 and 13 are answered incorrectly by many students and higher ability students do
not do much better, if at all, on these items.

The fact that few students at any ability level correctly answered items 3 and 13 explains why BILOG-MG

could not find 3PL parameters for these items. In the 3PL model, there are three item parameters that might
explain why high and low ability students have approximately the same probability of correctly answering an
item. The item might be so difficult that the probability a high ability student will chose the correct answer
is approximately the same as the probability that a low ability student will give the right answer. Alternatively,
the item might not be very discriminating. Finally, the guessing parameter could be high enough that even
low ability students can guess the correct answer at the same frequency at which high ability students select the
correct answer. Some combination of these three possibilities is also a possible explanation. Without additional
data, BILOG-MG simply cannot determine the values for the discrimination, difficulty, and guessing
parameters for items 3 and 13. This is not an issue with the Rasch and 2PL models since they have fewer
item parameters.

As an interesting aside, one of us �Bailey� already suspected that item 3 was problematic before running this
IRT analysis. In fact, it was removed from versions of the SPCI that have been administered since this
pilot study. Item 13 was a surprise, however. In the most recent SPCI data �on which we plan to report in a
future publication�, there was a class in which almost every student incorrectly answered item 13 on the post-test.
Clearly, we must re-examine and revise item 13.

Figure 4 graphically compares the item difficulty parameters for each of the three IRT models. In general, the
estimates of bi for each item are similar for the Rasch, 2PL, and 3PL models. Three notable exceptions are
the 2PL difficulties for items 2, 3, and 13, which are much higher than the Rasch and 3PL �for item 2 only�
difficulty estimates. These are the same three items for which students of high ability have roughly the
same probability of giving the right answer as students of low ability. The 2PL model accounts for this by

Table 3. Rasch model item parameters for the SPCI. SE stands for standard error
Item ai ai’s SE bi bi’s SE ci ci’s SE

1 0.461 0.010 0.399 0.189 0 0
2 0.461 0.010 4.786 0.213 0 0
3 0.461 0.010 4.933 0.217 0 0
4 0.461 0.010 �1.180 0.197 0 0
5 0.461 0.010 4.396 0.227 0 0
6 0.461 0.010 1.192 0.179 0 0
7 0.461 0.010 0.549 0.191 0 0
8 0.461 0.010 2.677 0.178 0 0
9 0.461 0.010 1.885 0.176 0 0

10 0.461 0.010 1.824 0.194 0 0
11 0.461 0.010 1.341 0.190 0 0
12 0.461 0.010 3.663 0.219 0 0
13 0.461 0.010 4.139 0.190 0 0
14 0.461 0.010 �3.404 0.262 0 0
15 0.461 0.010 2.498 0.198 0 0
16 0.461 0.010 �0.185 0.182 0 0
17 0.461 0.010 0.968 0.198 0 0
18 0.461 0.010 4.396 0.226 0 0
19 0.461 0.010 3.100 0.200 0 0
20 0.461 0.010 2.482 0.192 0 0
21 0.461 0.010 0.834 0.187 0 0
22 0.461 0.010 5.796 0.281 0 0
23 0.461 0.010 1.612 0.184 0 0
assigning a high value to the difficulty parameters for these items.



Table 4. 2PL model item parameters for the SPCI. SE stands for standard error
Item ai ai’s SE bi bi’s SE ci ci’s SE

1 0.546 0.063 0.572 0.166 0 0
2 0.129 0.033 13.004 3.050 0 0
3 0.130 0.035 13.377 3.295 0 0
4 0.394 0.064 �1.390 0.401 0 0
5 0.494 0.057 4.506 0.348 0 0
6 0.325 0.047 1.388 0.252 0 0
7 0.599 0.062 0.724 0.152 0 0
8 0.168 0.036 5.134 0.923 0 0
9 0.214 0.039 2.818 0.454 0 0

10 0.648 0.062 1.784 0.151 0 0
11 0.586 0.060 1.411 0.157 0 0
12 0.630 0.062 3.386 0.221 0 0
13 0.082 0.023 16.203 4.336 0 0
14 0.602 0.122 �2.505 0.560 0 0
15 0.565 0.062 2.473 0.202 0 0
16 0.247 0.045 �0.947 0.493 0 0
17 0.935 0.099 1.022 0.112 0 0
18 0.490 0.057 4.526 0.345 0 0
19 0.452 0.053 3.343 0.284 0 0
20 0.432 0.050 2.741 0.243 0 0
21 0.477 0.059 0.961 0.180 0 0
22 0.689 0.074 5.053 0.307 0 0
23 0.418 0.049 1.811 0.212 0 0
Table 5. 3PL model item parameters for the SPCI. SE stands for standard error
Item ai ai’s SE bi bi’s SE ci ci’s SE

1 0.905 0.160 1.235 0.324 0.194 0.077
2 1.061 0.449 5.111 0.769 0.164 0.020
3 ¯ ¯ ¯ ¯ ¯ ¯

4 0.589 0.094 �0.157 0.475 0.206 0.094
5 1.369 0.309 3.292 0.167 0.090 0.021
6 0.763 0.200 2.395 0.366 0.262 0.069
7 0.902 0.114 1.050 0.238 0.121 0.058
8 1.195 0.483 4.241 0.467 0.298 0.027
9 0.535 0.156 3.627 0.535 0.249 0.066

10 1.222 0.213 1.929 0.179 0.136 0.043
11 1.142 0.215 1.797 0.219 0.175 0.053
12 1.864 0.358 2.736 0.105 0.099 0.019
13 ¯ ¯ ¯ ¯ ¯ ¯

14 0.812 0.134 �1.589 0.388 0.173 0.084
15 2.037 0.503 2.546 0.114 0.193 0.025
16 0.406 0.075 0.650 0.641 0.199 0.090
17 2.122 0.523 1.602 0.147 0.210 0.039
18 1.176 0.256 3.328 0.180 0.079 0.022
19 1.317 0.315 2.926 0.159 0.157 0.029
20 0.740 0.121 2.456 0.233 0.093 0.043
21 1.161 0.276 2.015 0.250 0.291 0.054
22 1.867 0.426 3.424 0.142 0.039 0.011
23 0.807 0.161 2.117 0.292 0.167 0.062



Figure 5 compares the 2PL and 3PL discrimination parameters for each item. For each item, the 3PL value for
ai is larger than the 2PL value. Why? Remember that the 3PL model also includes a guessing parameter.
The 3PL model can thus attribute at least some of the correct responses of low ability students to an item to
guessing. In contrast, since the 2PL model does not account for guessing, low ability students who nevertheless
give a correct answer necessarily reduce the discriminatory capability of an item. By including the effects
of guessing, the 3PL model makes items seem more discriminating than they would appear in the 2PL model.

Figure 6 shows the 3PL guessing parameters for each item. Many items have guessing parameters in the
range of 0.20 to 0.25. This makes sense, as six items �items 2, 9, 10, 16, 18, and 21� have four answer choices
while the rest have five. If students simply guess on each question, we expect them to choose the correct
answer 25% �for four choices� or 20% �for five choices� of the time. However, this raises an important issue.
On concept inventories, we do not want students to simply guess an answer. Instead, we want to write
items such that high ability students are likely to pick the correct answer and low ability students are likely to
pick one of the distractors. If low ability students are frequently drawn to one or more distractors, then
they should choose the correct answer at a lower rate than one might expect by chance �Sadler et al. 2010�.
The fact that so many items have guessing parameters in the 0.20–0.25 range may indicate that many items on
the SPCI do not have appealing distractors.

Figure 7 shows the ability estimates �both before and after instruction� for the Rasch, 2PL, and 3PL models as
a function of the percent correct on the SPCI. Note that there is a one-to-one correspondence between
percent correct and Rasch model ability estimates. This is a manifestation of the fact that the total test score is
a sufficient statistic for the Rasch model �Andersen 1977; Embretson and Reise 2000�. Since the total test
score is not a sufficient statistic for either the 2PL or 3PL ability estimates, a variety of ability estimates may

Figure 4. A comparison of the difficulty �bi� parameters for each item for the Rasch �blue double triangles�, 2PL �red
diamonds�, and 3PL models �green triangles�. Error bars represent standard errors

Figure 5. A comparison of the discrimination �ai� parameters for each item for the 2PL �red diamonds� and 3PL models

�green triangles�. Error bars represent standard errors



correspond to a single percent correct score. Another way of thinking about this is that 2PL and 3PL ability
estimates depend on which items a student correctly answers; in these models, items with larger discriminations
are given larger weights in the estimation of abilities.

Figure 7 also shows that the ability estimates for any of the three models are nonlinear functions of the
percent correct. This means a change of 10% correct corresponds to a different change in ability depending on
where one starts. We revisit this issue when we discuss IRT gain calculations in Sec. 5 below.

How accurate are the ability estimates in Figure 7? We can answer this question by examining the standard
errors associated with each ability estimate, shown as the error bars in Figure 7. Another way to answer this
question is to look at plots of the standard errors as a function of ability �Hambleton and Jones 1993�. This
is shown for the Rasch, 2PL, and 3PL models in Figs. 8–10. These figures also show the test information function,
which is the reciprocal of the standard error plot �Hambleton and Jones 1993; Lord 1980�. Where the
standard error is lowest �and the test information highest� is where the SPCI gives the best estimates of ability
�Hambleton and Jones 1993�.

The differences in the plots in Figures 8–10 can be explained by the effects of the discrimination and
guessing parameters �Embretson and Reise 2000�. In the 2PL and 3PL models, items can have different
discriminations from one another. This allows us to better estimate students’ abilities based on how they answer

Figure 6. A comparison of the guessing �ci� parameters for each item for the 3PL model. Error bars represent standard errors

Figure 7. Rasch model �upper left�, 2PL �upper right�, and 3PL �bottom� ability estimates as a function of the percent correct
on the SPCI both pre- �blue squares� and post-instruction �red diamonds�. Error bars represent the standard errors. The error

bars are suppressed in the 2PL and 3PL graphs for clarity



the most discriminating items, which is why the test information peaks in Figure 9 �the 2PL model� and 10
�the 3PL model� are higher than in Figure 8 �the Rasch model�. The guessing parameter has the opposite effect:
Nonzero guessing parameters mean that even students with very low abilities have a nonzero probability of
correctly answering items, which reduces our ability to estimate abilities based on total test scores. This effect
is the most pronounced at the extremes of the distribution. This is why the test information curve is so low
for abilities less than 0 logits in Figure 10. Figures 8–10 demonstrate how the different item parameters influence
our capacity to estimate students’ abilities.

Figures 8–10 underscore an important point: Test items should be chosen such that the test information curve
peaks at the ability around which most examinees are clustered �Hambleton and Jones 1993; Lord 1980�.
For example, Figure 10 implies that the SPCI can best estimate the 3PL abilities of students whose abilities
are around 2.8 logits. If we administer the test to a population of students with abilities near �2.8 logits, then
we may not get very accurate 3PL ability estimates due to the high standard error at around that point. If

Figure 8. The standard error �dotted red curve� and test information �solid blue curve� as a function of ability for the Rasch
model

Figure 9. The standard error �dotted red curve� and test information �solid blue curve� as a function of ability for the 2PL
model

Figure 10. The standard error �dotted red curve� and test information �solid blue curve� as a function of ability for the 3PL
model



the test information curve peaks at a higher ability than most examinees possess, then the test designer should
include additional easier items in order to better estimate examinees’ abilities; conversely, if the test
information curve peaks at a lower ability than most examinees posses, then the test designer should include
additional harder items. Note that this contradicts a CTT principle of test construction that says one should
choose items with P-values around 0.50 in order to maximize test reliability �Ding and Beichner 2009�.

If one uses a Rasch model, then one can visually check whether or not the items’ difficulties fall around the
same logit values as examinees’ abilities by constructing a Wright map. See Pek and Poh �2000�, Planinic �2006�,
and Planinic, Ivanjek, and Susac �2010� for examples of Wright maps from PER studies. A Wright map for
the SPCI data is shown in Figure 11. On the left is a histogram of respondents’ abilities both before and after
instruction. Since abilities and item difficulties are both measured in logits, we placed each item from the
SPCI at the logit value of its difficulty on the right. Figure 11 shows that students’ post-instruction abilities have
a larger mean and standard deviation than their pre-instruction abilities. Figure 11 also shows that many
items are located at logit values larger than many students’ abilities, both before and after instruction.

One can also use the Wright map to quickly estimate the probability a student with a given ability will correctly
answer an item �Wilson 2005�. One need only read off an ability value and an item difficulty from the
Wright map and apply Eq. �3�. For example, the peak of the pre-instruction distribution appears to lie near 0
logits. Students in this part of the distribution have an approximately 50% chance of correctly answering
item 16 since its difficulty value also places it near 0 logits. Note that we could not make this quick estimation
if we instead created a Wright Map from our 2PL or 3PL data. In either case, we would need to know the
values of other item parameters �ai and ci� in order to calculate probabilities. This is one reason why one does
not, in general, construct Wright maps when using the 2PL and 3PL models.

Figure 11. The Wright map for the Rasch model ability and item difficult estimates for the SPCI. Each bin is 0.2 logits wide
and is labeled by the upper value of the bin �e.g., bin 1 includes logit values between 0.8 and 1�. Pre-instruction ability
estimates are shown in grey while post-instruction abilities are shown in white



5. LEARNING GAINS IN IRT

Researchers use concept inventories to measure learning gains. As we discussed in Sec. 2.2, these measures of
learning gain are frequently obtained directly from the raw pre- and post-test scores. IRT models convert
raw scores into measures of ability. If IRT-estimated abilities fall on an interval scale �which is not always the
case—see Sec. 8 below�, then we can compute gains by subtracting students’ pre-instruction abilities from
their post-instruction abilities �Embretson and Reise 2000�. Given that IRT postulates a nonlinear relationship
between raw scores and abilities, how do IRT computed gains compare with more traditional gain
calculations?

Figure 12 compares IRT calculated gains ��post−�pre� to gains calculated using Hake’s �1998� normalized gain
formula. Regardless of which IRT model one chooses, Figure 17 shows that there is not a one-to-one
correspondence between Hake’s normalized gain and changes in IRT ability. A given value for Hake’s normalized
gain may correspond to multiple IRT gains.

In Sec. 2.2, we alluded to the fact that higher values for Hake’s gain do not always correlate with greater
changes in ability. Here is one concrete example: Say student A has a raw pre-test score of 1 on the SPCI, while
student B has a raw pre-test score of 18. After instruction, student A’s SPCI score improves to 4 and student
B’s score improves to 21. Both students improved by three points �4%�. According to Hake’s formula, student B
has the higher gain: gB=1.57, while gA=0.14. If we instead look at the differences in their pre- and
post-instruction Rasch model abilities, then we see student A’s ability increased by 0.81 logits, while student
B’s ability increased by 0.55 logits. The discrepancy in who achieved the largest gain may be explained by the
fact that Hake’s gain is biased toward high pre-test scores �Brogt et al. 2007�. Student B has the higher
pre-test score, and Hake’s formula assigned student B a larger normalized gain than student A, even though
student A’s ability increased by more logits than student B’s ability. With this example in mind, we must ask the
provocative question: Which is the better measure of students’ learning gain?

6. ASSESSING MODEL FIT

As Secs. 4 and 5 show, IRT models provide substantial information about a test’s items and test takers. Much
of this information presumes that the IRT model one uses actually fits the data. In this section, we examine
how well the Rasch, 2PL, and 3PL models fit our SPCI data. Some PER IRT studies explicitly address the need
to check model fit �Lee et al. 2008; Planinic 2006; Planinic, Ivanjek, and Susac 2010; Wang and Bao
2010�, while others do not �Pek and Poh 2000; Marshall, Hagedorn, and O’Connor 2009�. The fact that we

Figure 12. IRT calculated gains as a function of Hake’s normalized gain. The upper left panel shows Rasch model gains, the
upper right panel shows 2PL gains, and the bottom panel shows 3PL gains
can test the applicability of a given IRT model is one advantage IRT has over CTT �Embretson and Reise 2000�.



BILOG-MG checks the model fit for each item by performing a �2 test. To calculate the �2 statistics, BILOG-MG

first bins examinees based on their estimated abilities. BILOG-MG then calculates the proportion of examinees
within each bin that correctly answer a given item. Finally, it compares this observed proportion to the proportion
correct predicted by the IRT model. �N.B.: This procedure uses the random sampling interpretation of the
probability in IRT models; see Holland 1990 and Borsboom 2005�. The null hypothesis for this test is that the
IRT model describes the observed response frequencies for each subgrouping of ability. As with all �2

tests, the null hypothesis is rejected for an item when the p-value associated with the item’s �2 value �not to
be confused with the P-value described in Sec. 2 as a CTT estimate of item difficulty� is small. This means items
whose observed response patterns fit the model will have large p-values. Convention suggests flagging
items as exhibiting model misfit when they have p-values �0.05; when the p-value is this low, it suggests that
the deviations of the observed response pattern from the IRT model cannot be explained by chance. Note
that this is opposite of most tests of statistical significance in which one wants p�0.05 in order to reject a null
hypothesis that two samples are not different.

Table 6 shows the �2 p-values for each item on the SPCI for the Rasch, 2PL, and 3PL models. BILOG-MG

used both pre- and post-test responses to calculate these fit statistics. These p-values are bolded and italicized
whenever they are smaller than the 0.05 threshold. Table 6 shows that the Rasch model has the largest
number of misfitting item �16 items�, followed by the 2PL model �9 items�, and then the 3PL model �7 items�.

BILOG-MG also produces fit plots: These are graphical representations of how well the observed responses to
an item fit the model �Harris 1989�. Figure 13 is an example of a fit plot. It shows the 2PL ICC for item 23. The
dots are the observed proportion of respondents in an ability bin who gave the right answer. The error bars
represent the standard error of the ICC at a given logit value. The 2PL model fits the observed responses to item
23 well since all dots fall within the error bars in Figure 13.

Fit plots can reveal the degree of misfit for each item. For example, consider Figure 14. The �2 p-value
indicates the Rasch model does not fit the pattern of observed responses for item 7. Figure 14 shows that this
misfit is due to one point; overall, the amount of misfit does not appear to be too severe. In fact, when we

2

Table 6. �2 p-values for the Rasch, 2PL, and 3PL models. All �2 p-values �0.05 are bolded and italicized
Item Rasch 2PL 3PL

1 0.0001 0.0145 0.0061
2 0.0000 0.0090 0.0095
3 0.0000 0.3025 ¯

4 0.6956 0.2579 0.6896
5 0.2426 0.8185 0.7599
6 0.7423 0.2674 0.2622
7 0.0002 0.1961 0.0000
8 0.0000 0.4108 0.1714
9 0.0056 0.2497 0.9367

10 0.0002 0.0169 0.5795
11 0.0017 0.5726 0.4697
12 0.0000 0.0072 0.7515
13 0.0000 0.0195 ¯

14 0.0021 0.0551 0.0000
15 0.0006 0.0211 0.7848
16 0.0052 0.0271 0.0422
17 0.0000 0.0271 0.9307
18 0.1942 0.2831 0.9866
19 0.1661 0.0151 0.7300
20 0.1916 0.1728 0.0000
21 0.0013 0.0251 0.0013
22 0.0000 0.3375 0.7108
23 0.1677 0.9547 0.4482
examined the fit plots for all items we found that many of the items with � p-values �0.05 possess only a slight



amount of misfit. We could not draw this conclusion without looking at the graphs BILOG-MG generates.

Figure 15 shows another fit plot, this time for item 5 with parameters estimated using the 3PL model. BILOG-MG

assigns this item a �2 p-value of 0.7599, despite the fact that the model does not seem to fit the data at all.
What is going on? BILOG-MG does not choose ability bins such that each bin has a roughly equal number of
respondents. We hypothesize that BILOG-MG selected some ability bins with few or no students. This would
throw off the �2 values BILOG-MG calculates. Regardless of the explanation, Figure 15 further underscores the
need to look at fit plots; if one only looks at �2 p-values, then one would have no idea that there was any
problem with this item.

BILOG-MG’s fit statistics have other problems. For example, they are known to exhibit Type I errors �Orlando
and Thissen 2000�. While there are other methods for ascertaining fit, IRT fit statistics, in general, are
underdeveloped. Many researchers are working to better understand the strengths and limitations of various
IRT fit statistics �e.g., Orlando and Thissen 2000; Wu and Adams 2010�, although much work remains to be done.
Furthermore, researchers who exclusively use the Rasch model often use different fit statistics than the ones
we describe here; see Wilson �2005� for a review of these statistics and Wu and Adams �2010� for important
warnings on their misuse. For the time being, we advise researchers who use IRT to consider multiple
approaches �such as looking at both �2 p-values and fit plots� to judge model fit.

7. TESTING THE ASSUMPTIONS OF IRT

In addition to judging model fit, IRT users should also examine whether or not the two underlying assumptions
of IRT—unidimensionality and local independence—also hold. Only some of the PER and AER IRT studies
discuss checking these assumptions �Ding and Beichner 2009; Marshall, Hagedorn, and O’Connor 2009; Planinic,

Figure 13. The 2PL fit plot for item 23. The curve is the 2PL ICC. Each dot represents the proportion of respondents in an
ability bin who gave the correct answer. The error bars represent the standard error of the ICC

Figure 14. The Rasch model fit plot for item 7. The curve is the Rasch model ICC. Each dot represents the proportion of
respondents in an ability bin who gave the correct answer. The error bars represent the standard error of the ICC
Ivanjek, and Susac 2010; Sadler 1998; Wang and Bao 2010�. If these assumptions do not hold, then many



of IRT’s potential benefits, such as parameter invariance, will not be realized. In this section we outline one
method for testing unidimensionality and one method for testing local independence. See Embretson and Reise
�2000� and references therein for overviews of alternative approaches.

We use Bejar’s �1980� approach for evaluating unidimensionality. Bejar’s technique relies on estimating item
parameters twice. One estimation uses students’ responses to every item, as usual. We call these the total
test-based estimates. We then estimate item parameters a second time using only a subset of the test’s items.
These are the subtest-based estimates. One should choose items for the subtest that one believes probe a different
content area from the other items �Bejar 1980�.

If the item is truly unidimensional, then a plot of the subtest-based item parameter estimates versus the total
test-based item parameter estimates should lie near a line with a slope of 1 and an intercept of 0 �Bejar 1980�.
Why? If the points depart significantly from this line, then the subtest-based item parameter estimates do
not equal the total test-based item parameter estimates. But different item parameter estimates for an item imply
different probabilities for passing that item. Bejar noted that “�t�his is inadmissible because it implies that
performance on that item depends on which items are included in the test, which contradicts the assumption
that a single trait explains performance on all items” �Bejar 1980, p. 284�.

Within the SPCI, there are natural divisions of the items by content. Out of the 23 items, 13 items cover star
properties �including stellar masses, the temperature-color relationship, and the mass-lifetime relationship�,
five cover fusion, and five cover star formation �Bailey 2007�. We selected the 13 star properties items �items
3, 5, 7, 9, 10, 13, 16–18, and 20–23� as our subtest for Bejar’s unidimensionality test.

Figures 16–18 show the subtest-based item difficulty estimates plotted versus the total test-based item
difficulty estimates for the Rasch, 2PL, and 3PL models, respectively. While similar plots could be made for
the discrimination and guessing parameters, Bejar �1980� warned that these item parameters are often not
estimated as accurately as item difficulties. Such plots might confound departures from unidimensionality
with parameter estimation accuracy issues.

Figures 16–18 each show two lines. The solid lines represent a line with a slope of 1 and an intercept of 0.
The dashed lines represent a line fitted to the data �what Bejar calls the “principle axis”�. These two lines are
separated by angles of 39.6°, 38.7°, and 38.3° for the Rasch, 2PL, and 3PL models, respectively. The fact
that the solid and dashed lines in Figures 16–18 have different slopes suggests the SPCI is not unidimensional.
In the future, we may reanalyze the SPCI using one of the many multidimensional IRT models, which we
do not discuss here �but see Ackerman, Gierl, and Walker 2003 and Briggs and Wilson 2003 and references
therein�.

We used Yen’s �1984� Q3 statistic to evaluate the local independence assumption. Yen’s Q3 statistic looks at
the difference between the observed and model-predicted responses to each item and then correlates these
residuals across respondents by item �Yen 1984�. Tables 7–9 show Yen’s Q3 statistic for each item pair on
the SPCI for the Rasch, 2PL, and 3PL models, respectively. Yen and Fitzpatrick �2006� recommend flagging all
item pairs for which her eponymous statistic ��0.20�. Every such value is bolded in Tables 7–9. In general,
most entries in Tables 7–9 are well below this threshold, indicating that local independence is a valid assumption

Figure 15. The 3PL fit plot for item 5. The curve is the 3PL ICC. Each dot represents the proportion of respondents in an
ability bin who gave the correct answer. The error bars represent the standard error of the ICC
for most item pairs on the SPCI.



A few entries in Tables 7–9 are flagged, however. Item pairs with correlated residuals ��0.20� include items 5
and 22, 7 and 20, 10 and 17, 12 and 15, 12 and 19, and 16 and 17. Most of these results make sense.
Items 5 and 22 ask students to infer the relative lifetimes of stars given their masses, while items 10 and 17
ask the reverse. Items 7 and 20 both probe the relationship between a star’s temperature and color. Items 12, 15,
and 19 all refer to fusion. The only item pair whose flagged Q3 statistic is not immediately explainable is

Figure 16. The Rasch model difficulties �bi� of the 13 star properties items estimated without the other ten items versus the
difficulties estimated with the other ten items. Error bars represent standard errors. The solid line is where the points should
lie if unidimensionality holds, while the dashed line represents the line on which the points actually lie

Figure 17. The 2PL difficulties �bi� of the 13 star properties items estimated without the other ten items versus the difficulties
estimated with the other ten items. Error bars represent standard errors. The solid line is where the points should lie if
unidimensionality holds, while the dashed line represents the line on which the points actually lie



items 16 and 17. Item 16 asks students to compare the luminosity of two stars, while item 17 asks how a
star’s lifetime is related to its mass. Aside from this one instance, our cursory analysis of the content of the flagged
items reveals ready explanations for their high Q3 statistics.

Our analysis above demonstrates one method for testing the assumption of unidimensionality and one method
for testing the assumption of local independence. Researchers employing IRT models should use these or
alternative methods to check whether or not the data supports IRT’s assumptions before drawing any final
conclusions from their IRT analysis.

8. COMPARING THE RASCH, 2PL, AND 3PL MODELS

In Secs. 4–7 we examined the SPCI using the Rasch, 2PL, and 3PL models. But amidst all the mathematical
and statistical machinery operating in the body of this paper, let us not lose sight of our objective: We
want to measure students’ abilities. Have we succeeded?

We have certainly attached a lot of numbers to the SPCI’s items and the ASTRO 101 students in our sample.
If, like Stevens �1946�, we define measurement as “the assignment of numerals according to rules,” then
everything we have done counts as measurement. Which model provides the best measures? Is it the model
that best fits the data—in this case, the 3PL model? More fundamentally, is Stevens’s definition an adequate
conceptualization of measurement?

Social science researchers frequently look to the physical sciences to better understand the process of
measurement. After all, the physical sciences possess theories of remarkable predictive power and generality.
These theories are built on the foundation of measurement. Wright—who was a physicist by training and
a psychometrician by practice—outlined a number of requirements for measures. According to Wright �1997�,
measures must be

1� unidimensional,
2� sample-independent,
3� invariantly comparable, and
4� additive.

Figure 18. The 3PL difficulties �bi� of the 13 star properties items estimated without the other ten items versus the difficulties
estimated with the other ten items. Error bars represent standard errors. The solid line is where the points should lie if
unidimensionality holds, while the dashed line represents the line on which the points actually lie
Do the numbers generated by IRT models meet these requirements? We consider each of these in turn.



Tabl with values �
0.20
 are highlighted
Item 16 17 18 19 20 21 22 23

1 0.11 �0.06 0.02 0.00 �0.03 �0.06 �0.06 �0.02
2 0.04 �0.07 0.05 0.00 �0.08 �0.01 0.00 �0.02
3 0.01 �0.06 �0.02 0.07 �0.04 �0.01 �0.02 �0.08
4 0.10 �0.07 �0.08 �0.08 �0.06 �0.10 �0.02 0.02
5 0.08 0.14 0.17 0.09 0.03 �0.01 0.39 �0.04
6 0.10 �0.02 �0.03 �0.04 �0.11 �0.02 �0.02 �0.05
7 0.03 �0.04 0.03 �0.07 0.37 0.09 �0.02 �0.02
8 0.01 �0.06 �0.07 �0.03 �0.03 �0.03 �0.02 �0.06
9 0.07 �0.03 �0.11 0.02 �0.01 0.00 0.00 �0.10
10 0.10 0.43 0.08 0.07 0.06 �0.12 0.09 0.05
11 0.17 0.06 0.01 0.08 0.01 �0.07 0.01 0.00
12 0.17 0.06 0.19 0.22 0.02 �0.01 0.14 0.02
13 0.01 �0.09 �0.08 �0.04 �0.08 �0.01 �0.05 �0.03
14 0.02 �0.01 0.08 0.05 0.05 0.03 0.05 0.06
15 0.18 0.00 0.14 0.20 �0.02 �0.08 0.09 �0.05
16 1.00 �0.20 �0.11 �0.13 0.00 0.08 �0.11 �0.08
17 0.20 1.00 0.07 0.00 0.01 �0.12 0.12 0.09
18 0.11 0.07 1.00 0.08 0.09 0.01 0.19 �0.01
19 0.13 0.00 0.08 1.00 0.02 �0.04 0.17 �0.03
20 0.00 0.01 0.09 0.02 1.00 �0.02 0.09 0.00
21 0.08 �0.12 0.01 �0.04 �0.02 1.00 0.01 �0.02
22 0.11 0.12 0.19 0.17 0.09 0.01 1.00 �0.01
23 0.08 0.09 �0.01 �0.03 0.00 �0.02 �0.01 1.00
e 7. Yen’s Q3 statistic for each pair of items. Item parameters are estimated from the Rasch model. Cells
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.00 �0.07 �0.06 0.06 �0.03 �0.04 �0.06 �0.05 �0.11 �0.06 0.03 0.05 0.03 �0.06 0.04 �

�0.07 1.00 �0.03 �0.06 0.02 �0.03 �0.03 �0.04 �0.04 �0.10 �0.06 �0.01 0.01 0.00 0.05 �

�0.06 �0.03 1.00 �0.04 0.03 0.01 �0.06 �0.06 0.11 �0.04 �0.05 0.04 0.00 �0.01 0.03 �

0.06 �0.06 �0.04 1.00 �0.05 �0.04 �0.11 0.00 �0.08 �0.06 �0.02 �0.09 �0.10 �0.07 �0.11 �

�0.03 0.02 0.03 �0.05 1.00 �0.01 �0.02 �0.06 �0.02 0.08 0.05 0.10 �0.12 �0.06 0.08 �

�0.04 �0.03 0.01 �0.04 �0.01 1.00 �0.07 �0.04 �0.02 �0.05 �0.04 �0.05 �0.03 0.00 �0.07 �

�0.06 �0.03 �0.06 �0.11 �0.02 �0.07 1.00 �0.09 �0.12 �0.08 �0.01 �0.08 �0.03 0.06 �0.10
�0.05 �0.04 �0.06 0.00 �0.06 �0.04 �0.09 1.00 0.02 �0.02 0.01 �0.02 0.02 0.08 �0.05
�0.11 �0.04 0.11 �0.08 �0.02 �0.02 �0.12 0.02 1.00 �0.08 �0.03 �0.06 �0.07 0.01 �0.02
�0.06 �0.10 �0.04 �0.06 0.08 �0.05 �0.08 �0.02 �0.08 1.00 0.01 0.06 �0.07 0.02 0.08 �

0.03 �0.06 �0.05 �0.02 0.05 �0.04 �0.01 0.01 �0.03 0.01 1.00 0.09 �0.09 0.06 0.10 �

0.05 �0.01 0.04 �0.09 0.10 �0.05 �0.08 �0.02 �0.06 0.06 0.09 1.00 �0.02 0.05 0.48 �

0.03 0.01 0.00 �0.10 �0.12 �0.03 �0.03 0.02 �0.07 �0.07 �0.09 �0.02 1.00 0.04 �0.08 �

�0.06 0.00 �0.01 �0.07 �0.06 0.00 0.06 0.08 0.01 0.02 0.06 0.05 0.04 1.00 0.03 �

0.04 0.05 0.03 �0.11 0.08 �0.07 �0.10 �0.05 �0.02 0.08 0.10 0.48 �0.08 0.03 1.00 �

�0.11 �0.04 �0.01 �0.10 �0.08 �0.10 0.03 0.01 0.07 �0.10 �0.17 �0.17 �0.01 �0.02 �0.18
�0.06 �0.07 �0.06 �0.07 0.14 �0.02 �0.04 �0.06 �0.03 0.43 0.06 0.06 �0.09 �0.01 0.00 �

0.02 0.05 �0.02 �0.08 0.17 �0.03 0.03 �0.07 �0.11 0.08 0.01 0.19 �0.08 0.08 0.14 �

0.00 0.00 0.07 �0.08 0.09 �0.04 �0.07 �0.03 0.02 0.07 0.08 0.22 �0.04 0.05 0.20 �

�0.03 �0.08 �0.04 �0.06 0.03 �0.11 0.37 �0.03 �0.01 0.06 0.01 0.02 �0.08 0.05 �0.02
�0.06 �0.01 �0.01 �0.10 �0.01 �0.02 0.09 �0.03 0.00 �0.12 �0.07 �0.01 �0.01 0.03 �0.08
�0.06 0.00 �0.02 �0.02 0.39 �0.02 �0.02 �0.02 0.00 0.09 0.01 0.14 �0.05 0.05 0.09 �

�0.02 �0.02 �0.08 0.02 �0.04 �0.05 �0.02 �0.06 �0.10 0.05 0.00 0.02 �0.03 0.06 �0.05 �



Tabl ith values �
0.20
 are highlighted
Item 16 17 18 19 20 21 22 23

1 0.07 �0.16 0.00 �0.01 �0.04 �0.06 �0.09 �0.03
2 0.01 �0.04 0.06 0.02 �0.06 0.02 0.02 0.00
3 0.02 �0.04 �0.01 0.09 �0.02 0.02 �0.01 �0.05
4 0.05 �0.12 �0.08 �0.08 �0.06 �0.08 �0.03 0.02
5 0.09 0.11 0.16 0.08 0.03 �0.03 0.38 �0.05
6 0.06 �0.03 �0.02 �0.02 �0.09 0.00 �0.02 �0.03
7 0.06 �0.15 0.00 �0.08 0.35 0.10 �0.05 �0.03
8 0.02 �0.01 �0.01 0.04 0.02 0.01 0.06 �0.02
9 0.08 0.01 �0.04 0.09 0.05 0.04 0.08 �0.06

10 0.10 0.35 0.04 0.03 0.03 �0.16 0.03 0.02
11 0.14 �0.05 �0.03 0.06 �0.01 �0.08 �0.03 �0.02
12 0.16 �0.02 0.15 0.20 0.00 �0.04 0.08 0.01
13 0.03 �0.04 �0.05 �0.02 �0.06 0.02 �0.02 0.00
14 0.01 �0.09 0.05 0.02 0.03 0.03 0.01 0.05
15 0.17 �0.08 0.11 0.18 �0.03 �0.10 0.04 �0.06
16 1.00 �0.23 �0.12 �0.12 0.00 0.12 �0.11 �0.07
17 0.23 1.00 0.03 �0.04 �0.04 �0.18 0.08 0.05
18 0.12 0.03 1.00 0.08 0.09 �0.01 0.17 �0.01
19 0.12 �0.04 0.08 1.00 0.02 �0.04 0.16 �0.02
20 0.00 �0.04 0.09 0.02 1.00 �0.02 0.08 0.01
21 0.12 �0.18 �0.01 �0.04 �0.02 1.00 �0.02 �0.02
22 0.11 0.08 0.17 0.16 0.08 �0.02 1.00 �0.03
23 0.07 0.05 �0.01 �0.02 0.01 �0.02 �0.03 1.00
e 8. Yen’s Q3 statistic for each pair of items. Item parameters are estimated from the 2PL model. Cells w
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.00 �0.04 �0.02 0.07 �0.05 �0.03 �0.08 �0.02 �0.07 �0.12 0.00 0.02 0.07 �0.08 0.01 �

�0.04 1.00 �0.02 �0.03 0.03 �0.01 0.00 �0.02 �0.01 �0.08 �0.03 0.01 0.01 0.02 0.07 �

�0.02 �0.02 1.00 �0.01 0.05 0.04 �0.02 �0.04 0.13 �0.02 �0.03 0.06 0.01 0.00 0.05
0.07 �0.03 �0.01 1.00 �0.05 �0.03 �0.11 0.03 �0.05 �0.09 �0.03 �0.10 �0.06 �0.06 �0.12 �

�0.05 0.03 0.05 �0.05 1.00 �0.01 �0.04 0.00 0.05 0.03 0.01 0.06 �0.09 �0.09 0.05 �

�0.03 �0.01 0.04 �0.03 �0.01 1.00 �0.05 �0.01 0.01 �0.05 �0.03 �0.04 0.00 0.01 �0.06 �

�0.08 0.00 �0.02 �0.11 �0.04 �0.05 1.00 �0.05 �0.08 �0.15 �0.04 �0.12 0.02 0.04 �0.14
�0.02 �0.02 �0.04 0.03 0.00 �0.01 �0.05 1.00 0.06 0.02 0.05 0.06 0.03 0.10 0.01
�0.07 �0.01 0.13 �0.05 0.05 0.01 �0.08 0.06 1.00 �0.04 0.01 0.02 �0.05 0.04 0.05
�0.12 �0.08 �0.02 �0.09 0.03 �0.05 �0.15 0.02 �0.04 1.00 �0.07 �0.02 �0.04 �0.04 0.01 �

0.00 �0.03 �0.03 �0.03 0.01 �0.03 �0.04 0.05 0.01 �0.07 1.00 0.04 �0.05 0.02 0.05 �

0.02 0.01 0.06 �0.10 0.06 �0.04 �0.12 0.06 0.02 �0.02 0.04 1.00 0.02 0.00 0.45 �

0.07 0.01 0.01 �0.06 �0.09 0.00 0.02 0.03 �0.05 �0.04 �0.05 0.02 1.00 0.06 �0.05
�0.08 0.02 0.00 �0.06 �0.09 0.01 0.04 0.10 0.04 �0.04 0.02 0.00 0.06 1.00 �0.02

0.01 0.07 0.05 �0.12 0.05 �0.06 �0.14 0.01 0.05 0.01 0.05 0.45 �0.05 �0.02 1.00 �

�0.07 �0.01 0.02 �0.05 �0.09 �0.06 0.06 0.02 0.08 �0.10 �0.14 �0.16 0.03 0.01 �0.17
�0.16 �0.04 �0.04 �0.12 0.11 �0.03 �0.15 �0.01 0.01 0.35 �0.05 �0.02 �0.04 �0.09 �0.08 �

0.00 0.06 �0.01 �0.08 0.16 �0.02 0.00 �0.01 �0.04 0.04 �0.03 0.15 �0.05 0.05 0.11 �

�0.01 0.02 0.09 �0.08 0.08 �0.02 �0.08 0.04 0.09 0.03 0.06 0.20 �0.02 0.02 0.18 �

�0.04 �0.06 �0.02 �0.06 0.03 �0.09 0.35 0.02 0.05 0.03 �0.01 0.00 �0.06 0.03 �0.03
�0.06 0.02 0.02 �0.08 �0.03 0.00 0.10 0.01 0.04 �0.16 �0.08 �0.04 0.02 0.03 �0.10
�0.09 0.02 �0.01 �0.03 0.38 �0.02 �0.05 0.06 0.08 0.03 �0.03 0.08 �0.02 0.01 0.04 �

�0.03 0.00 �0.05 0.02 �0.05 �0.03 �0.03 �0.02 �0.06 0.02 �0.02 0.01 0.00 0.05 �0.06 �



Tabl ith values �
0.20
 are highlighted
Item 17 18 19 20 21 22 23

1 �0.14 0.01 0.00 �0.05 �0.06 �0.09 1.00
2 �0.04 0.03 �0.01 �0.08 0.02 �0.03 �0.04
4 �0.13 �0.09 �0.06 �0.08 �0.09 �0.01 0.06
5 0.07 0.01 �0.05 �0.08 �0.03 0.22 �0.04
6 �0.03 �0.02 �0.02 �0.09 0.00 �0.03 �0.03
7 �0.16 0.00 �0.09 0.35 0.09 �0.06 �0.09
8 �0.04 �0.07 �0.02 �0.01 0.01 �0.03 �0.01
9 0.01 �0.08 0.06 0.03 0.04 0.03 �0.07
10 0.34 �0.03 �0.02 �0.03 �0.17 �0.06 �0.12
11 �0.06 �0.07 0.03 �0.06 �0.09 �0.10 �0.01
12 �0.09 �0.02 0.06 �0.14 �0.05 �0.17 0.03
14 �0.13 0.01 �0.01 �0.03 0.01 �0.04 �0.11
15 �0.10 0.00 0.10 �0.13 �0.10 �0.10 0.03
16 �0.20 �0.07 �0.06 0.04 0.13 �0.04 �0.06
17 1.00 �0.02 �0.09 �0.10 �0.17 0.02 �0.14
18 �0.02 1.00 �0.05 0.00 �0.01 �0.03 0.01
19 �0.09 �0.05 1.00 �0.06 �0.05 �0.01 0.00
20 �0.10 0.00 �0.06 1.00 �0.04 �0.05 �0.05
21 �0.17 �0.01 �0.05 �0.04 1.00 �0.03 �0.06
22 0.02 �0.03 �0.01 �0.05 �0.03 1.00 �0.09
23 0.02 �0.06 �0.07 �0.03 �0.03 �0.09 �0.04
e 9. Yen’s Q3 statistic for each pair of items. Item parameters are estimated from the 3PL model. Cells w
1 2 4 5 6 7 8 9 10 11 12 14 15 16

1.00 �0.04 0.06 �0.04 �0.03 �0.09 �0.01 �0.07 �0.12 �0.01 0.03 �0.11 0.03 �0.06
�0.04 1.00 �0.02 0.00 �0.02 0.01 �0.04 �0.02 �0.09 �0.04 �0.02 0.02 0.06 �0.01

0.06 �0.02 1.00 �0.04 �0.03 �0.15 0.04 �0.06 �0.10 �0.04 �0.10 �0.10 �0.09 �0.04
�0.04 0.00 �0.04 1.00 �0.01 �0.04 �0.07 0.02 �0.03 �0.03 �0.14 �0.15 �0.06 �0.02
�0.03 �0.02 �0.03 �0.01 1.00 �0.06 �0.01 0.01 �0.06 �0.03 �0.05 0.00 �0.06 �0.05
�0.09 0.01 �0.15 �0.04 �0.06 1.00 �0.05 �0.08 �0.17 �0.07 �0.15 �0.02 �0.15 0.07
�0.01 �0.04 0.04 �0.07 �0.01 �0.05 1.00 0.05 �0.01 0.03 �0.02 0.09 �0.04 0.06
�0.07 �0.02 �0.06 0.02 0.01 �0.08 0.05 1.00 �0.05 0.00 �0.03 0.02 0.01 0.09
�0.12 �0.09 �0.10 �0.03 �0.06 �0.17 �0.01 �0.05 1.00 �0.11 �0.12 �0.09 �0.04 �0.06
�0.01 �0.04 �0.04 �0.03 �0.03 �0.07 0.03 0.00 �0.11 1.00 �0.03 �0.03 0.02 �0.12

0.03 �0.02 �0.10 �0.14 �0.05 �0.15 �0.02 �0.03 �0.12 �0.03 1.00 �0.06 0.38 �0.10
�0.11 0.02 �0.10 �0.15 0.00 �0.02 0.09 0.02 �0.09 �0.03 �0.06 1.00 �0.04 0.01

0.03 0.06 �0.09 �0.06 �0.06 �0.15 �0.04 0.01 �0.04 0.02 0.38 �0.04 1.00 �0.10
�0.06 �0.01 �0.04 �0.02 �0.05 0.07 0.06 0.09 �0.06 �0.12 �0.10 0.01 �0.10 1.00
�0.14 �0.04 �0.13 0.07 �0.03 �0.16 �0.04 0.01 0.34 �0.06 �0.09 �0.13 �0.10 �0.20

0.01 0.03 �0.09 0.01 �0.02 0.00 �0.07 �0.08 �0.03 �0.07 �0.02 0.01 0.00 �0.07
0.00 �0.01 �0.06 �0.05 �0.02 �0.09 �0.02 0.06 �0.02 0.03 0.06 �0.01 0.10 �0.06

�0.05 �0.08 �0.08 �0.08 �0.09 0.35 �0.01 0.03 �0.03 �0.06 �0.14 �0.03 �0.13 0.04
�0.06 0.02 �0.09 �0.03 0.00 0.09 0.01 0.04 �0.17 �0.09 �0.05 0.01 �0.10 0.13
�0.09 �0.03 �0.01 0.22 �0.03 �0.06 �0.03 0.03 �0.06 �0.10 �0.17 �0.04 �0.10 �0.04
�0.04 0.00 0.01 �0.10 �0.03 �0.05 �0.03 �0.07 �0.02 �0.05 �0.06 0.01 �0.10 �0.04



The first requirement, unidimensionality, is a fundamental assumption of the three IRT models present here.
As we discussed in preceding sections, there is no guarantee that an instrument such as the SPCI will probe only
a single construct. However, there are methods by which one can test whether or not unidimensionality
holds.

Sample-independence reflects the idea that what we measure should not depend on what we use to measure it.
If a person measures the length of a table, then her result should not depend on which meter stick she
used. Likewise, the fidelity of the meter stick should not depend on which table is measured. In the context of
tests, our measures of students’ abilities should not depend on which items we use to measure their abilities
and our calibration of our test items should not depend on the population of students to which they are
administered �Wright 1997�. In the case of IRT, parameter invariance encapsulates this idea.

What about invariant comparisons? This is precisely what Rasch �1960� worried about when he formulated his
principle of specific objectivity:

A person having a greater ability than another should have the greater probability of solving any item
of the type in question, and similarly, one item being more difficult than another one means that
for any person the probability of solving the second item correctly is the greater one. �p. 117, italics
in original�

In other words, the difference in abilities between two people A and B ��A−�B� should be the same regardless
of the items we use to measure those abilities. Likewise, the difference in the difficulties of two items m
and n �bm−bn� should be the same regardless of who answers the items. This was the idea we used to motivate
the Rasch model in Sec. 3. But look again at the ICCs for items 16 and 17 in Figures 1–3. In the 2PL and
3PL models, the ICCs cross. What does this mean? A student of low ability �say, �p=−3� finds item 17 is harder
than item 16. A student of high ability �say, �p=3� finds item 16 to be harder than item 17. Why should the
relative difficulties of items change with ability? The 2PL and 3PL models do not say. �Incidentally, the fact that
the relative order of items changes as a function of ability is another reason why Wright maps are not
constructed for 2PL and 3PL parameter estimates.� Examining the content of these items offers few clues. We
struggle to invent a story that explains why the lifetime-mass relationship for stars �the subject of item 17�
should be harder than determining the luminosity of stars �the subject of item 16� for students of low ability, while
exactly the opposite is true for students of high ability. This perplexing state of affairs is a general feature
of the 2PL and 3PL models: ICCs regularly cross, thus changing the order of item difficulties as a function of
test-taker ability �Wright 1997�. Crossing ICCs violate specific objectivity. The Rasch model, with its constant
discrimination parameter and its lack of a guessing term, is the only IRT model consistent with specific objectivity
and thus the only IRT model that allows for invariant comparisons �Rasch 1960; Wright 1997�. In other
words, the Rasch model is the only IRT model out of the three we have considered that satisfies Wright’s third
criterion for measurement.

The final requirement, additivity, is the key to interval scales. Additivity reflects our capacity to combine
objects end-to-end to form a larger object �Narens and Luce 1986; Borsboom 2005�. For example, one can
combine two or more meter sticks to measure the height of various objects. These additive combinations allow
us to express how much of a property an object possesses �i.e., a measure of the height of a building can be
formulated as the number of meter sticks we need to put end-to-end in order to equal the building’s height�. In
the physical sciences, we work with measures that either permit such additive operations or are formed by
combining measures that permit additive operations. But when we attempt to measure a latent psychological
attribute, such as a student’s ability, we run into a problem: What is the additive operation for this measure?
Since such latent traits are not directly observable, psychometricians struggled for years to invent additive
measures.

Such was the situation until Luce and Tukey’s �1964� landmark paper introducing additive conjoint measurement.
See also Borsboom �2005�, Narens and Luce �1986�, and Kyngdon �2008� for reviews of this idea. Conjoint
measurement concerns two independent objects, X and Y, which combine to form a dependent variable Z.
Additive conjoint measurement says X and Y can be simultaneously quantified such that changes in X can
be expressed in terms of the changes in Y needed to maintain a constant value of Z, provided the elements of
Z obey certain axioms �Luce and Tukey 1964; Narens and Luce 1986; Borsboom 2005�. Measurement is
thus conceptualized as a tradeoff: Given a change in Y, what change in X would have changed Z by the same
amount �and vice versa�? Since differences in levels of X are matched to differences in levels of Y, X and
Y are necessarily placed on an interval scale �Borsboom 2005�. If one wants an interval scale for a measure,

then one must show that measure obeys the axioms of conjoint measurement.



The Rasch model has many similarities to additive conjoint measurement �Perline, Wright, and Wainer 1979;
Wright 1997; Embretson and Reise 2000; Kyngdon 2008�. Specifically, a dependent variable �the log odds
Dpi of person p giving a correct response to item i� is the difference between the person’s ability �p and the item’s
difficulty bi. Changing the difficulty of the item requires an equivalent change in the person’s ability in
order to maintain the same log odds of a correct response. The Rasch model appears to be consistent with
conjoint measurement, even though Rasch formulated this model several years before conjoint measurement was
explicated. Of course, such similarities are no guarantee that the Rasch model always achieves conjoint
measurement. Whether or not one has additive conjoint measurement depends on whether or not its axioms
are satisfied �Kyngdon 2008; Borsboom and Scholten 2008�.

In the years since Luce and Tukey published their work, people have debated whether or not the Rasch model
is an instance of conjoint measurement �Perline, Wright, and Wainer 1979; Wright 1997; Embretson and
Reise 2000; Borsboom 2005; Kyngdon 2008; Michell 2008; Borsboom and Scholten 2008�. Unfortunately, only
a small number of studies have actually attempt to show that data described by the Rasch model also obey
conjoint measurement’s axioms �Karabastos 2001; Perline, Wright, and Wainer 1979; Embretson and Reise 2000�.
Discussing these axioms and investigating whether our SPCI data follows them are beyond the scope of this
paper. We simply want to point out that specific objectivity is a necessary but not sufficient condition for conjoint
measurement—meaning that the 2PL and 3PL models are not instances of conjoint measurement and,
therefore, cannot provide interval scales.

What about the fact that the 2PL and 3PL models fit the data better than the Rasch model? This is not
necessarily a virtue. The 2PL and 3PL models are practically guaranteed to fit the data better than the Rasch
model since they have more adjustable parameters. This means the 2PL and 3PL models can fit a wider variety
of data—but is this a good quality? Masters �1988� described how discriminations that change from item to
item may actually be due to testing populations of students who differ in 1� their opportunities to learn the
material probed by the item, 2� their test wiseness, or 3� the speed at which they work through the test.
These three forms of bias are confounds that may hinder our efforts to measure the construct in which we are
interested. What about the guessing parameter? Given that concept inventories, such as the SPCI, are multiple
choice tests, should we not include such a parameter? At first, we might suspect that a guessing parameter is
needed since even examinees of very low ability could potentially select a correct answer by merely guessing.
But at another level, this seems anathema to the very idea of a concept inventory. As we mentioned earlier, the
items and the answer choices that appear on concept inventories are based on research into common student
difficulties. A good item should therefore have one or more plausible distractors that students of low ability are
drawn to. From this perspective, and as noted in Sec. 4, students of low ability should not have a significantly
nonzero probability of giving the correct answer to any item �Sadler et al. 2010�. The discrimination and
guessing parameters may actually obscure potential problems. Data that do not fit the Rasch model might be a
symptom of problems with the test or the testing procedures.

The Rasch, 2PL, and 3PL models do not only differ in the forms of their equations; they also differ with
respect to the underlying goals of measurement �Andrich 2004; Michell 2008; Wright 1997�. Proponents of the
2PL and 3PL models argue that the Rasch model is often too simple to describe real data. They use the 2PL
or 3PL models because they do a better job of describing the data �Andrich 2004�. Proponents of the Rasch model
counter that the 2PL and 3PL models may hide problems that the researcher should be aware of �Andrich
2004; Masters 1988; Wright 1997�. The 2PL and 3PL models also cannot be used to conduct conjoint
measurement and construct interval scales �Wright 1997�. Rasch model advocates argue that we need to find data
that fits the Rasch model—otherwise, despite all of our mathematical manipulations, we are not actually
measuring anything �Andrich 2004; Michell 2008; Wright 1997�. Wright �1997� summarized this position:

There is a vast difference between gerrymandering whatever kind of model might seem to give a
locally good description of some transient set of data and searching, instead, for the kind of data that
can yield inferentially stable—that is, generalizable—meaning to the parameter estimates of interest.
The 3P model is data driven: The model must fit, or another model must be found. The 3P model seldom
objects to an item, no matter how badly it functions. The Rasch model is theory driven: The data
must fit, or else better data must be found. Indeed, it is the search for better data that sets the stage for
discovery. The only way discovery can occur is as an unexpected discrepancy from an otherwise
stable frame of reference. When we study data misfit to the Rasch model, we discover new things about
the nature of what we are measuring and the way that people are able to tell us about it in their
responses. These discoveries are important events that strengthen and clarify our construct as well as

our ability to measure it. �p. 43�



Researchers who design and/or use concept inventories should carefully consider these issues since they get to
the heart of the nature of measurement. If we are inarticulate about what we want to measure and the
criteria by which something is considered a measurement, then how can we have any confidence in our capacity
to measure students’ abilities?

9. SUMMARY AND CONCLUSIONS

What information should readers take away from this paper? We emphasize three separate “take home”
messages.

First, this paper is meant to provide astronomy education researchers an introduction to the theory and
methods of IRT. We motivated the need for IRT by highlighting some weaknesses with CTT and traditional
learning gain calculations in Sec. 2. We introduced the basics of IRT along with the Rasch, 2PL, and 3PL models
in Sec. 3. We devoted the majority of this paper �Secs. 4–7� to demonstrating how one can apply IRT by
using the Rasch, 2PL, and 3PL models to analyze the SPCI. Our discussion emphasized the necessity of checking
whether a given IRT model fits the data and whether the assumptions of IRT hold. IRT is not a panacea
that can be applied to any set of data to cure all imperfections; if one wants to leverage the strengths of IRT
over other models, such as CTT, then one must ensure that its assumptions hold true and the model fits.
We acknowledge that our discussion of IRT is necessarily brief. We advise readers searching for more detail
to consult the foundational works of IRT �Lord and Novick 1968; Rasch 1960� as well as subsequent pedagogical
treatments �Embretson and Reise 2000; Hambleton and Jones 1993; Harris 1989; Ding and Beichner 2009�.

Second, we used IRT to investigate the SPCI. Our investigation highlights a number of important points. First,
the SPCI contains some problematic items �e.g., items 3 and 13�. Item 3 has already been removed from
the current version of the SPCI and, as a result of our analysis, item 13 is now a candidate for revision. Second,
the difficulties of many SPCI items appear mismatched with the majority of students’ abilities, both pre-
and post-instruction. This is best demonstrated by looking at the Wright map in Figure 11, which shows there
are many items with logit values significantly higher than the logit values of students’ post-instruction
abilities. Future iterations of the SPCI should include more items with lower difficulty values so that we can
more accurately measure the abilities of students at the lower end of the distribution. Third, the efficacy
of many of the distractors on the SPCI should be re-evaluated since our 3PL analysis revealed that even students
of low abilities have significant �20–25%� probabilities of guessing the correct answer. Fourth, we must
carefully re-examine all items that do not fit each IRT model. Such item misfit investigations have the potential
to uncover previously unsuspected problems with individual items. For example, Planinic �2006� and Planinic,
Ivanjek, and Susac �2010� discussed the role misfit investigations play in detecting problems with the
Force Concept Inventory �Hestenes, Wells, and Swackhamer 1992� and the Conceptual Survey of Electricity
and Magnetism �Maloney et al. 2001�. Finally, the SPCI’s apparent departures from unidimensionality and
violations of local independence should be further investigated in order to improve future versions of the
test. Alternatively, we may reanalyze the SPCI with one or more multidimensional IRT models �Ackerman, Gierl,
and Walker 2003; Briggs and Wilson 2003�. In general, we do not consider the problems we uncovered
with the SPCI as constituting any sort of failure. After all, developing an instrument to measure students’ mental
processes is necessarily a complex and time-intensive endeavor; why should we expect perfection early on?
We think the issues we uncovered using IRT will help us learn more about this important instrument and offer
guidance toward ongoing revisions and refinements.

Finally, we hope we can jump-start a debate in the AER community about the nature and goals of measurement.
Concept inventories are typically used to measure students’ learning gains—but what does measuring entail?
Is simply assigning numbers according to rules à la Stevens �1946� a sufficient condition for measurement? At the
very least, Stevens �1946� warns us to carefully consider the type of scale we generate by our
number-assignment rules. Depending on the scale, one cannot perform some mathematical operations and
make certain inferences. However, if we want measures that share properties with measures in the physical
sciences, then we must move beyond Stevens’s conceptualization of measurement. We must worry about
properties such as specific objectivity �Rasch 1960� and satisfying the axioms of conjoint measurement �Luce
and Tukey 1964�. These requirements restrict us to the Rasch model �Wright 1997�. Yet such a restriction
is required if we want interval scales and the inferential and comparative capabilities they bring.

What are some future steps the AER community can take? Certainly, other concept inventories should be
investigated using IRT models. These investigations will help our community develop better instruments for

measuring students’ abilities. If researchers decide that they need instruments that yield interval scales, then more



ambitious studies should test whether or not the axioms of conjoint measurement hold. Testing conjoint
measurement would be a fascinating and badly needed study in the field of psychometrics in general, since
only a few studies have applied its axioms to real data �Embretson and Reise 2000; Perline, Wright, and Wainer
1979�.

Of course, applying IRT may be excessive for some studies. Depending on the goals and nature of the study,
simpler procedures, such as those from CTT, may provide sufficient information. However, these procedures
must be explicitly defended within the context of the goals and nature of the study. If we do not carefully consider
what we are trying to measure, then we may select methods that are either too simplistic to provide us with
the information we desire or are more complex than is necessary. If we make such errors, especially the former,
then critics may justifiably question what, if anything, we are measuring.
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